
 

 

 

 

 

 

 

 

 

 

Fig. 3: Probability of success for values of tmax between 1 and 50. 
The optimal value of tmax we determined, 18, is indicated, along 
with its associated success probability of 0.99. 

Combinatorial Optimisation with Adiabatic Quantum Computing  
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Combinatorial optimisation is the act of finding the ideal combination of a discrete set of objects subject to a set of constraints; its applications span biology, engineering, computer science, and applied 
mathematics. In this work, we solve the combinatorial optimisation problem Maximal Independence Set for a small 5-vertex graph with Adiabatic Quantum Computing simulated in Python, and 

suggest that a tmax of 18 is optimal, giving a success probability of 0.99 in line with the industry standard (King, J. et al., 2015). 

4 Simulation 
We simulated the process with matrix techniques in Python, using NumPy and 
SciPy for linear algebra operations, setting 

(6) 
 

and Hproblem = HIsing as defined above. We initialised the wavefunction in the 
ground-state of Hinitial,              , and simulated time evolution using the 
exponential time-evolution operator derived from Schrodinger’s equation, 
finding the wavefunction after k steps to be 

(7) 
 
where    indicates the products are time-ordered, and q gives the total number 
of steps the simulation takes. The formula is exact in the limit q goes to infini-
ty, but for our purposes we found q = 1000 to yield good results.  
 Since H(t) lives and acts in the space of 2n-component column vectors,                                                  
can always be expressed as a linear combination of the column vectors     , 
the standard basis vectors with 1 at index j, and 0 elsewhere. From Fig. 1, we 
know the ground-state of our HIsing to be            =      , representing the 
MIS. From the quantum measurement theory, the probability of measuring a 
system with wavefunction         in state    at time t is given by 

,     (8) 

where Ps(t) gives the probability of success. 

1 Optimisation 

Combinatorial optimisation (CO) is the act of finding the ideal combination 
of a discrete set of objects subject to a set of constraints. CO problems are 
found everywhere, from protein structure prediction in biology, to delivery 
scheduling in logistics[1].  
 In theory, all CO problems can be solved if every possible solution is calcu-
lated and compared, but, unfortunately, their sets of possible solutions often 
grow exponentially with problem size, making this intractable. Instead, we look 
to more efficient heuristic algorithms that yield approximate solutions. CO is 
a large area of research, with many classical algorithms able perform it rela-
tively efficiently[2]. For a quantum approach to be worthwhile, it is not suffi-
cient to demonstrate it performs CO: a clear advantage over classical ap-
proaches must be shown in order to justify the hardware investment required. 
 In this work, we solve the CO problem Maximal Independent Set (MIS) 
with simulated Adiabatic Quantum Computing, demonstrating that it could be 
solved on a real Adiabatic Quantum Computer. For a graph of n vertices, 
some connected by edges, the MIS is obtained by colouring as many vertices 
as possible whilst requiring that no two coloured vertices are connected 
by an edge. MIS has broad applications, from financial analysis, to digital error 
correction[3]. Fig. 1 shows the MIS of the graph we investigated, defined by 
upper-triangular adjacency matrix M, where elements Mij are 1 if vertices i 
and j share an edge, and else 0. This graph has 25

 = 32 possible colourings. 

 

 

 

 
 

Fig. 1: The graph we investigated. From left to right: a coloured set which isn’t independent, is independ-
ent but not maximal, the maximal independent set, the adjacency matrix that defines the graph. The 

graphs are annotated with the state vectors describing their colouring. 

3 The Ising Model 
To solve a CO problem with AQC, we must define a Hamiltonian Hproblem 
whose ground-state describes the optimal solution. For this, we borrow the 
Ising model from statistical mechanics. The Ising Hamiltonian is given by 

(3) 

 

where  

,                            (4) 

I2 is the 2 x 2 identity matrix, n the total number of vertices, σz the z-th Pauli 

matrix, and hj and Jkj are chosen specifically for each problem[5].  de-
notes sequential tensor products. We encoded our problem into the Ising Hamil-
tonian, setting J = M, and  

(5) 
 

where          was added to reward (give lower energy for) a higher number of 
coloured vertices, and J and hk were chosen to reward independence[6]. 
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2 Adiabatic Quantum Computing (AQC) 
AQC is a form of quantum computing based on the Quantum Adiabatic Theo-
rem: an isolated physical system prepared in the ground-state of a time-
dependent Hamiltonian stays in the ground-state as time evolves and the 
Hamiltonian changes, provided the change is sufficiently small and there is al-
ways a sufficient energy gap between the ground and first-excited states[4]. In 
AQC, the time-dependent Hamiltonian is the sum of two terms, 

.                     (1) 
The initial Hamiltonian, Hinitial, has a known ground-state in which the system 
is prepared. The final, problem Hamiltonian, Hproblem, is chosen such that its 
ground-state describes the optimal solution. H(t) is a 2n x 2n matrix, so its 
ground-state is difficult to calculate for a large number of vertices n. Instead, we 
can use AQC to find the ground state of Hproblem, and thus perform CO. In this 
work, we chose to set  

  ,                  (2) 
where tmax is the total time the system takes to solve the problem. For an ideal 

Adiabatic Quantum Computer, tmax → ∞, but, as we show, the process works 
heuristically for finite time periods, giving the optimal solution 99% of the 
time for a tmax of 18. 

 

 
 

 

 

 
 

Fig. 2: Instantaneous probability 
of success in finding the MIS of 
the graph we investigated, plotted 
for six values of tmax.  

 

 

 

 

 

 

SCAN to see how the 
probability of measuring the 
system in each     changes 

during simulation for tmax = 
18. 
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In Fig. 2, the instantaneous probability of success, Ps(t), is plotted for six val-
ues of tmax. In Fig. 3, the final probability of success was plotted for values of 
tmax between 1 and 50. At values of tmax close to 1, the success probabilities 
weren’t far removed from random guessing. The algorithm got more successful 
as tmax increased up to approximately 18, after which it stayed approximately 
constant between 0.99 and 1. We can therefore say that the process was ap-
proximately adiabatic for tmax in this range, meaning the evolution was suffi-
ciently slow, and the energy gap between the ground and first-excited states was 
sufficiently large, as shown in Fig. 4, for the Quantum Adiabatic Theorem to 
apply.  
 Success probabilities of 0.99 or greater are generally perceived as acceptable 
in industry, so we determine, from Fig. 3, tmax = 18 to be the optimal choice
[7], and state that AQC can be used to find the MIS for our graph heuristically. 
 The graph we investigated was small and could be easily solved classical-
ly. To prove AQC is viable as a method for CO, some kind of ‘quantum ad-
vantage’ must be demonstrated over classical approaches, either producing the 
same results in a shorter time-period, or producing better results in the same 
time-period. We did not demonstrate any quantum advantage in this work.  

 

Fig. 4: Instantaneous energy eigen-
spectrum of the system we investi-
gated. States higher than the initial 
third excited state omitted for clari-
ty. The energy gap between the 
ground and first-excited states is 
sufficient for the process to be adi-
abatic throughout.  
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