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1 Optimisation

3 The Ising Model

To solve a CO problem with AQC, we must define a Hamiltonian Hoblem
whose ground-state describes the optimal solution. For this, we borrow the
Ising model from statistical mechanics The Ising Hamiltonian is given by

Higing = Z Z J1j0r0; -i—Zh 07,

k=1 j=k+1
(@) (&7)

L is the 2 x 2 identity matrix, n the total number of vertices, o” the 2-th Pauli

matrix, and h; and Ji; are chosen specifically for each probleml’l. & de-
notes sequential tensor products. We encoded our problem into the Ising Hamil-
tonian, setting J = M, and n

()

j=1
where « = 1/2 was added to reward (give lower energy for) a higher number of
coloured vertices, and J and h; were chosen to reward |ndependence[6]

Combinatorial optimisation (CO) is the act of finding the ideal combination
of a discrete set of objects subject to a set of constraints. CO problems are
found everywhere, from protein structure prediction in biology, to delivery
scheduling in Ioglst|cs[ ]

In theory, all CO problems can be solved if every possible solution is calcu-
lated and compared, but, unfortunately, their sets of possible solutions often
grow exponentially with problem size, making this intractable. Instead, we look
to more efficient heuristic algorithms that yield approximate solutions. CO is
a large area of research, with many classical algorithms able perform it rela-
tively efficientlym. For a quantum approach to be worthwhile, it is not suffi-
cient to demonstrate it performs CO: a clear advantage over classical ap-
proaches must be shown in order to justify the hardware investment required.

In this work, we solve the CO problem Maximal Independent Set (MIS)
with simulated Adiabatic Quantum Computing, demonstrating that it could be
solved on a real Adiabatic Quantum Computer. For a graph of n vertices,
some connected by edges, the MIS is obtained by colouring as many vertices
as possible whilst requiring that no two coloured vertices are connected
by an edge. MIS has broad applications, from financial analysis, to digital error
correction3l Fig. 1 shows the MIS of the graph we investigated, defined by
upper-triangular adjacency matrix M, where elements M;; are 1 if vertices ¢
and j share an edge, and else 0. This graph has 2° = 32 possible colourings.

(3)

where

4 Simulation

We simulated the process with matrix techniques in Python, using NumPy and
SciPy for linear algebra operations, setting
(6)

Zcr

mltlal
‘{)1 100) ‘0101(» ‘10011 (O 110 O\ and Hpyoblem = Hising as defined above. We |n|t|aI|sed the wavefunction in the
00101 ground-state of Hiitia, |¢0(t = 0)), and simulated time evolution using the
M=10 0011 exponential time-evolution operator derived from Schrodinger’s equation,
KO 00 00 finding the wavefunction after k steps to be
k
0000 0 ktm)> T[T [_itm i (7)

s = (L) | jote = 0

where 7 indicates the products are time-ordered, and ¢ gives the total number
of steps the simulation takes. The formula is exact in the limit ¢ goes to infini-
ty, but for our purposes we found ¢ = 1000 to yield good results.

Since H(t) lives and acts in the space of 2"-component column vectors,
can always be expressed as a linear combination of the column vectors |[j),
the standard basis vectors with 1 at index 7, and 0 elsewhere. From Fig. 1, we
know the ground-state of our Higp, to be [10011) = \19), representing the
MIS. From the quantum measurement theory, the probability of measuring a

Fig. 1: The graph we investigated. From left to right: a coloured set which isn't independent, is independ-
ent but not maximal, the maximal independent set, the adjacency matrix that defines the graph. The
graphs are annotated with the state vectors describing their colouring.

2 Adiabatic Quantum Computing (AQC)

AQC is a form of quantum computing based on the Quantum Adiabatic Theo-
rem: an isolated physical system prepared in the ground-state of a time-
dependent Hamiltonian stays in the ground-state as time evolves and the
Hamiltonian changes, provided the change is sufficiently small and there is al-

ways a sufficient energy gap between the ground and first-excited statesl™. In system with wavefunction |¢(¢))in state|j)at time ¢ is given by
AQC, the time-dependent Hamiltonian is the sum of two terms,

dent Homtonan is the s of o tr ol PURIO) = GO = RO = [19w0):

The initial Hamiltonian, Hiuitial, has a known ground state in which the system where P(1) gives the probability of success.
is prepared. The final, problem Hamiltonian, Hpobiem, is chosen such that its

0)

(8)

1.0
ground-state describes the optimal solution. H(?) is a 2" x 2" matrix, so its )
ground-state is difficult to calculate for a large number of vertices n. Instead, we g 0.8 7
can use AQC to find the ground state of Hpoplem, and thus perform CO. In this f .
work, we chose to set ° Fig. 2: Instantaneous probability
Alt) =1 — t/tmax and B(t) = -[;/tmax’ (2) % 0.4 4 of success in f_inding the MIS of
where .« is the total time the system takes to solve the problem. For an ideal % the graph we investigated, plotted
: . S 09 for six values of tmay.
Adiabatic Quantum Computer, t,.x = ©, but, as we show, the process works R~
heuristically for finite time periods, giving the optimal solution 99% of the 0.0L . . . | |
time for a t,.x of 18. 0.0 0.2 0.4 0.6 0.8 1.0

r."flrl!]H.\'.
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Combinatorial optimisation is the act of finding the ideal combination of a discrete set of objects subject to a set of constraints; its applications span biology, engineering, computer science, and applied
mathematics. In this work, we solve the combinatorial optimisation problem Maximal Independence Set for a small 5-vertex graph with Adiabatic Quantum Computing simulated in Python, and
suggest that a t,.x of 18 is optimal, giving a success probability of 0.99 in line with the industry standard (King, J. et al., 2015).
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Fig. 3: Probability of success for values of #,,x between 1 and 50.
The optimal value of #,.x we determined, 18, is indicated, along
with its associated success probability of 0.99.

Fig. 4: Instantaneous energy eigen-
spectrum of the system we investi-
gated. States higher than the initial

”535 third excited state omitted for clari-
E 4 ty. The energy gap between the
ground and first-excited states is
sufficient for the process to be adi-
G - abatic throughout.
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In Fig. 2, the instantaneous probability of success, P4(t), is plotted for six val-
ues of tmax. In Fig. 3, the final probability of success was plotted for values of
tmax between 1 and 50. At values of t,,ax close to 1, the success probabilities
weren't far removed from random guessing. The algorithm got more successful
as tmax increased up to approximately 18, after which it stayed approximately
constant between 0.99 and 1. We can therefore say that the process was ap-
proximately adiabatic for t,., in this range, meaning the evolution was suffi-
ciently slow, and the energy gap between the ground and first-excited states was
sufficiently large, as shown in Fig. 4, for the Quantum Adiabatic Theorem to
apply.

Success probabilities of 0.99 or greater are generally perceived as acceptable
in industry, so we determine, from Fig. 3, t,,.x = 18 to be the optimal choice
7l and state that AQC can be used to find the MIS for our graph heuristically.

The graph we investigated was small and could be easily solved classical-
ly. To prove AQC is viable as a method for CO, some kind of ‘quantum ad-
vantage’ must be demonstrated over classical approaches, either producing the
same results in a shorter time-period, or producing better results in the same
time-period. We did not demonstrate any quantum advantage in this work.
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