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Understanding how objects behave under stress is crucial in many areas of engineering and materials science,
spanning applications from aerospace to bio-engineering. Several numerical methods of stress analysis for
complex structures exist, but they are computationally intensive and, therefore, expensive to run. A cheaper,
quicker and simpler alternative to such methods is therefore required. Such an alternative is the experimentally-
based process of digital photoelasticity. In this report, two methods of digital photoelasticity are investigated: the
analytical ten-step phase-shifting technique based on Jones calculus (Ramji and Ramesh, 2008), and StressUnet,
a convolutional neural network based on the U-Net architecture (Zhao et al., 2022). The simplicity and low time
requirement of stress analysis with StressUnet compared to stress analysis with the phase-shifting technique
are highlighted. Both methods are shown to perform inconsistently when evaluated on experimentally obtained
data, but StressUnet is shown to perform robustly when evaluated on a large, diverse set of computer-generated
data. Experimental setup improvements for both methods are proposed, implementing the adaptive quality
guided phase unwrapping algorithm (Ramji, 2010) and increasing the number of training epochs are suggested
as improvements to the phase-shifting technique and StressUnet, respectively.

I. INTRODUCTION

Stress is a physical quantity that describes the magnitude
of the forces present in a material. Stress can be split into
shear stress and normal stress, quantifying the magnitude of
the forces acting parallel and normal to the material surface,
respectively [1]. High stress can result in a material failing.
For ductile materials such as aluminium, copper and steel,
failure occurs when they exceed their elastic range and un-
dergo permanent deformation. The Tresca criterion states
that ductile failure occurs when the maximum shear stress
τmax exceeds a material-specific critical value [2]. Duc-
tile materials are used in a broad range of fields including
aerospace and bio-engineering [3, 4]. To ensure compo-
nents built out of ductile material don’t fail under reason-
able stress and to build components more resistant to stress,
it is, therefore, key to predict τmax throughout their struc-
ture.

Most components are too complex in shape for τmax to be
predicted analytically over the whole field. As such, mathe-
matical models and computational simulations, such as the
finite element method, have been developed to predict τmax

numerically, but they are complicated to set up and require
expensive computing hardware to run [5].

Photoelasticity, first discovered by Brewster in 1815, is
the phenomenon of stress-induced birefringence [6]. Pho-
toelastic stress analysis, referred to hereafter as photoelas-
ticity, was pioneered in the mid-20th century by Frocht
[7, 8]. Initially, experimental frameworks were too slow
and results were too subjective for photoelasticity to achieve
mass adoption amongst engineers, but, with the rapid devel-
opment of digital image processing, digital photoelasticity
has emerged over the last thirty years as a viable low-cost
technique for stress analysis [9].

The ten-step Phase Shifting Technique (PST), proposed
by Ramji and Ramesh in 2008, has become a standard tech-
nique in digital photoelasticity. It combines the four-step
plane polariscope-based approach to isoclinic evaluation
proposed by Brown and Sullivan in 1990 with a six-step
circular polariscope-based approach to isochromatic evalu-
ation [10, 11]. The terms polariscope, isoclinic and isochro-
matic are defined in Section II.

Deep learning is a subset of machine learning based on
artificial neural networks. It allows computational mod-

els made of many processing layers to predict complex be-
haviour with multiple levels of abstraction [12]. Over the
past three decades, deep learning methods have transformed
a wide range of fields, including natural language process-
ing, speech recognition, image segmentation, drug discov-
ery and many more. Convolutional neural networks are a
type of deep neural network designed to process data in ar-
rays. Frequently used to extract information from images,
they work by applying a series of filter convolutions and
scaling operations to the input image and are good at identi-
fying fine features. Once designed and trained, deep learn-
ing models produce results quickly and can often be run on
generic personal computers. In 2020, Briñez-De-Leon et
al. proposed PhotoelastNet, a convolutional neural network,
and showed that it could be used to automatically quantify
stress maps from isochromatic images [13]. This was an ex-
citing development in digital photoelasticity, as it promised
to be a low-cost, quick and simple alternative to the more
complicated phase-shifting technique.

U-Net, proposed by Ronneberger et al. (2015) for
biomedical image segmentation, is an extension of the stan-
dard convolutional neural network that combines both fine-
feature and spatial information to aid prediction [14]. Zhao
et al. (2022) built on the work of Briñez-De-Leon et al.
(2020), presenting StressUnet, a U-Net-based deep learn-
ing model with an added physical constraint model. They
demonstrated that it achieved better accuracy than Photoe-
lastNet and required less time and data to train [15].

In this report, two techniques for digital photoelasticity,
the ten-step phase shifting technique and StressUnet with-
out the physical constraint module, are compared. Each
technique is used to produce whole field maps of the max-
imum shear stress τmax for a circular disc and ring under
diametric compression. StressUnet is also evaluated on a
large set of computer-simulated isochromatic images. We
expect the ten-step PST to be time-consuming, but produce
accurate stress maps, whereas StressUnet should be much
faster but produce less reliable results. We find that each
technique produces accurate results in some cases, and in-
accurate results in others, and suggest ways in which the
techniques and data collection process could be improved.
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II. THEORY

Birefringence is the property of some molecularly or-
dered, transparent materials to have a refractive index that
varies for different polarisations of light. Some materials,
such as polymers, are temporarily birefringent, and others,
such as crystals, are permanently birefringent. Waveplates
are optical devices manufactured out of permanently bire-
fringent material in such a way that they alter the polar-
isation of light travelling through them. To quantify this
behaviour, consider a beam of unpolarised monochromatic
light of wavelength λ travelling through a waveplate of
thickness h. We can think of this unpolarised beam as made
up of two plane-polarised beams, beam 1 and beam 2, with
mutually perpendicular oscillations. The refractive index
in the waveplate is different for each beam. Calling these
refractive indices n1 and n2, the beams travel through the
waveplate at speeds v1 and v2 given by

v1 =
c

n1
and v2 =

c

n2
(1)

where c denotes the speed of light in a vacuum. Hence,
beams 1 and 2 exit the waveplate with a phase difference δ,
given by

δ =
2πh

λ
(n1 − n2). (2)

Light with a phase difference of 0 or π is linearly polarised,
whereas light with a phase difference of π/2 or 3π/2 is cir-
cularly polarised. Hence, in altering the phase difference,
a waveplate alters the polarisation state of light through it.
A quarter waveplate is a popular waveplate instance that
imparts a π/2 phase difference on incident light. Linearly
polarised light incident on a quarter waveplate results in
circularly polarised light, and circularly polarised light in-
cident on a quarter waveplate results in linearly polarised
light. Equation (2) shows that phase difference is related
to wavelength, therefore quarter waveplates only impart an
exactly π/2 phase difference on light at a specific wave-
length, called the design wavelength. Phase difference di-
verges from π/2 for light with a wavelength far from the de-
sign wavelength. Waveplates have two axes often labelled
fast (F) and slow (S). Axes F and S are orthogonal and have
the minimum and maximum refractive indices, respectively
[16].

Photoelastically sensitive materials exhibit birefringence
when placed under stress. A sample prepared out of pho-
toelastically sensitive material acts as a waveplate with non-
uniform birefringence when subject to stress. Consider such
a sample, let the stress state at a point be described by or-
thogonal principal stresses σ1 and σ2 and let the refractive
indices corresponding to vibrations parallel to these princi-
pal stresses be n1 and n2. We define the stress-optic coeffi-
cient C for the material, such that

n1 − n2 = C(σ1 − σ2), (3)

and rewrite Equation (2) to determine the phase difference
δ in terms of principal stress difference, giving

δ =
2πhC

λ
(σ1 − σ2). (4)

For simplicity, σ1 and σ2 are chosen such that (σ1 − σ2)
is always positive. Unlike the principal stress difference,

the phase difference is modulated, meaning a phase differ-
ence of δ is indistinguishable from a phase difference of
δ + 2πn, where n is some integer. If the absolute phase
difference of light through scale models of large complex
structures constructed out of photoelastically sensitive ma-
terials can be measured, then the stress distribution in the
original structure can, therefore, be deduced [17]. The ab-
solute phase difference, from which the absolute stress dis-
tribution is deduced, is determined via phase unwrapping,
discussed in Section IV B.

The general optical arrangement used in photoelasticity
is called a polariscope. Two variations of the generic po-
lariscope are used: the plane polariscope and the circular
polariscope. The plane polariscope, shown in Fig. 1, con-
sists of a light source, two plane polarising filters referred to
as the polariser and analyser, a sample of photoelastic mate-
rial placed under stress between the polariser and the anal-
yser, and an image sensor. The circular polariscope, shown
in Fig. 2, is similar to the plane polariscope, but with the
addition of two quarter-waveplates, one placed in between
the sample and the polariser, and one in between the sample
and the analyser. A dark-field polariscope has the polariser
and analyser aligned perpendicular to each other and a light-
field polariscope has the polariser and analyser aligned in
parallel.

Using Jones calculus to trace the polarisation of light
through a dark-field linear polariscope, it can be shown that
the intensity of light transmitted Ip is given by

Ip = Ia sin
2 δ

2
sin2 2θ, (5)

where Ia gives the intensity of incident light, δ gives the
phase difference, and θ gives the angle of the slow axis
in the sample relative to a set of axes. Connected regions
of zero intensity are called dark fringes. By Equation (5),
many possible values of δ and θ yield zero intensity. Dark
fringes due to the first term, sin2 δ

2 , are called isochromat-
ics and are observed at points where the principal stress dif-
ference (σ1 − σ2) is such that the phase difference δ is a
multiple of 2π. By Equation (4), isochromatic contours are
lines of constant (σ1 − σ2). Dark fringes due to the sec-
ond term, sin2 2θ, are called isoclinics and are observed at
points where one of the principal stress directions coincides
with the direction of oscillation of incident plane polarised
light. The observed pattern in a plane polariscope is the su-
perposition of isoclinic and isochromatic fringes. Points at
which all isoclinics merge are called isotropics points. At
an isotropic point, every direction is a principal stress di-
rection and the principal stress difference is zero. Isotropic
points have an absolute phase difference δ of zero and are
key in determining the absolute phase difference over the
whole field, as discussed in Section IV B.

Similarly to the linear polariscope, it can be shown with
Jones calculus that the intensity of light transmitted from a
dark-field circular polariscope is given by

Id = Ia sin
2 δ

2
, (6)

and the intensity of light from a light-field circular polar-
iscope can be shown to be given by

Il = Ia cos
2 δ

2
. (7)

2



F. Bullard Comparative Analysis of the Ten-Step PST and StressUnet for Photoelastic Stress Analysis

FIG. 1: Plane polariscope. The experimental setup used in the first four steps of the ten-step PST.

FIG. 2: Circular polariscope. The experimental setup used in the final six steps of the ten-step PST.

Equations (6) and (7) show implicitly that the pattern
observed in a circular polariscope contains isochromatic
fringes only. Intuitively, this can be explained by the cir-
cular polarisation of light incident on the sample in a circu-
lar polariscope meaning the principal stress direction never
coincides with the direction of polarisation, so isoclinic
fringes never form.

To extract stress information from the isochromatic
fringe patterns, we rewrite Equation (4) in terms of isochro-
matic fringe-order N , giving

N =
δ

2π
=

hC

λ
(σ1 − σ2). (8)

From Mohr’s circle, the maximum shear stress τmax is given
in terms of the principal stress difference as

τmax =
1

2
(σ1 − σ2) (9)

[18]. Rearranging and substituting into Equation (9), we
find the maximum shear stress is given by

τmax =
NFσ

2h
, (10)

where Fσ denotes the material stress-fringe value,

Fσ =
λ

C
. (11)

It should be noted that the relationship between Fσ and prin-
cipal stress difference given implicitly as linear by Equation

(10) becomes non-linear at higher stress levels. In this re-
port, we assume linearity holds in all cases. Fσ varies from
batch to batch and over time, so it must be calculated at the
time of the experiment for each sheet of material [9].

III. EXPERIMENTAL SETUP

In our investigation, a 24V, 250W projector lamp with
an incandescent bulb was used as a light source, a softbox
and several layered sheets of tissue paper were used illu-
minate the sample evenly, a Canon EOS 760D digital SLR
with Canon EF-S 18-55MM F/3.5-5.6 IS II lens was used
with ISO-200 and an exposure time of 1/3s to capture the
images, and a modified car jack was used to place the sam-
ples under compressive stress. Exposure time and ISO were
selected to minimise image noise whilst balancing expo-
sure brightness and time needed to collect data. The de-
sign wavelength of the quarter waveplates we used was not
recorded, but similar products online range from 560 nm to
588 nm, with transmission greater than 90% in the range
450 nm to 700 nm [19].

Approximately monochromatic light was used for the
ten-step phase-shifting technique, and white light was used
to test StressUnet. The monochromatic light was obtained
by combining a yellow and a cyan colour filter and taking
data from the green channel only. The relative spectral re-
sponse of the camera we used was not available online; in-
stead, the relative spectral response for a similar model is il-
lustrated alongside the relative spectral content of a typical
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TABLE I: Optical arrangement and intensity equations calculated
with Jones Calculus for ten-step phase shifting techniques.

α ξ η β Intensity Equation

π/2 - - 0 I1 = Ib + Ia sin
2 δ

2
sin2 2θ

5π/8 - - π/8 I2 = Ib +
Ia
2
sin2 δ

2
(1− sin 4θ)

3π/4 - - π/4 I3 = Ib + Ia sin
2 δ

2
cos2 2θ

7π/8 - - 3π/8 I4 = Ib +
Ia
2
sin2 δ

2
(1 + sin 4θ)

π/2 3π/4 π/4 π/2 I5 = Ib +
Ia
2
(1 + cos δ)

π/2 3π/4 π/4 0 I6 = Ib +
Ia
2
(1− cos δ)

π/2 3π/4 0 0 I7 = Ib +
Ia
2
(1− sin 2θ sin δ)

π/2 3π/4 π/4 π/4 I8 = Ib +
Ia
2
(1 + cos 2θ sin δ)

π/2 π/4 0 0 I9 = Ib +
Ia
2
(1 + sin 2θ sin δ)

π/2 π/4 3π/4 π/4 I10 = Ib +
Ia
2
(1− cos 2θ sin δ)

Note. From “Developments in Photoelasticity: a Renais-
sance” (ch. 3, p. 6), by K. Ramesh, 2021, IOP Publishing
(https://iopscience.iop.org/book/mono/978-0-7503-2472-4).

incandescent bulb, the transmission fraction of the yellow
and cyan colour filters, and the resultant spectral content of
the monochromatic and colour images in Fig. 3. The re-
sultant monochromatic spectral content was calculated as
the normalised product of the yellow and cyan colour filter
transmission fractions, the incandescent bulb spectral con-
tent, and the green channel spectral response. The resul-
tant white light spectral content was calculated as the nor-
malised product of the spectral content of the incandescent
bulb and the sum of the spectral responses of the red, green
and blue channels. To best match the peak wavelength of
the monochromatic light to the design wavelength of the
quarter waveplates and minimise the error in δ, yellow and
cyan colour filters were chosen together to give approxi-
mately monochromatic green light with peak wavelength
(550 ± 50) nm and a narrow wavelength range; error cal-
culation is described in appendix A.

A polymethyl methacrylate (PMMA) disc and a PMMA
ring were used as samples to investigate each technique.
Both had thickness h of 12mm. The disc had radius 5 cm,
and the ring had inner and outer radii 2.5 cm and 5 cm, re-
spectively. To avoid errors due to residual stresses in the
material, each specimen was examined under zero load be-
fore use and was used only once.

IV. THE TEN-STEP PHASE SHIFTING TECHNIQUE

A. Background

The optical arrangements for each of the ten steps are
listed alongside the formulae for their intensity derived from
Jones calculus in Table I (K. Ramesh, 2021). The incident
and background intensities are indicated by Ia and Ib, re-
spectively. The ten optical arrangements were chosen care-
fully, keeping the quarter waveplates crossed where possi-
ble to minimise the influence of quarter waveplate misalign-
ment [9].

Derived from Jones calculus, the wrapped isoclinic pa-

rameter θc is given by

θc =
1

4
tan−1

(
I4 − I2
I3 − I1

)
=

1

4
tan−1

(
Ia sin

2 δ
2 sin(4θ)

Ia sin
2 δ

2 cos(4θ)

)
,

(12)

where I1, I2, I3, I4 are the intensities recorded at each re-
spective step. θc is undefined where sin2 δ/2 is equal to
0, implying the isoclinic parameter is undefined at isochro-
matic fringes. To produce continuous phase maps, θc was
set to 0 at such points. The subscript c indicates that the
principal value of the inverse tangent function is taken, so
θc has values between −π/4 and π/4.

θc is unwrapped to produce θ, which is used alongside
the intensities recorded in the final six steps I5, I6, I7, I8,
I9, I10 to determine the isochromatic parameter δc, where

δc = tan−1

(
(I9 − I7) sin 2θ + (I8 − I10) cos 2θ

I5 − I6

)
.

(13)
δc is wrapped between −π and π. Unwrapping δc and divid-
ing by 2π yields isochromatic fringe order N , from which
the maximum shear stress τmax can be obtained via Equa-
tion (10).

Determining δc with the wrapped isoclinic parameter θc
is possible, but areas of isoclinic fringe order greater than
zero produce ambiguous zones that are difficult to unwrap.
An unwrapping algorithm, described in Section IV B, is
used to produce θ which has values between −π/2 and π/2.

The maximum shear stress τmax is calculated from the
isochromatic fringe-order N via Equation (10), using the
material stress-fringe value Fσ determined for the batch of
material used. From the principle of superposition in solid
mechanics and applying Boussinesq’s solution for a semi-
infinite plate subjected to a concentrated vertical load, it can
be shown that a circular disc with diameter D under diame-
tral compression by load force P has material stress-fringe
value given by

Fσ =
8P

πDNc
, (14)

where Nc denotes the fringe order at the centre of the disc.

B. Unwrapping Isoclinics and Isochromatics

As the inverse tangent function is multi-valued, the
isoclinic and isochromatic parameters obtained from the
ten-step PST are wrapped in the ranges [−π/4, π/4] and
[−π, π], respectively. The isoclinic parameter θc must be
unwrapped for use in the determination of the isochromatic
parameter δc, and δc must be unwrapped to obtain the fringe
order N from which the Equation (10) is used to calculate
maximum shear stress τmax.

The unwrapped isoclinic parameter θ at a point is related
to the wrapped isoclinic parameter θc by

θ = θc + n
π

2
, n ∈ Z, (15)

where integer n is to be determined. The isochromatic
fringe order N is related to the wrapped isochromatic pa-
rameter δc by

2πN = δc + 2mπ, m ∈ Z, (16)

4
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FIG. 3: Spectral content of components. a) Relative spectral response of Canon EOS 40D digital SLR; b) relative spectral content of a
typical incandescent bulb; c) transmission fraction of yellow and cyan colour filters; d) relative spectral content of resultant colour and

monochromatic light [20–22]. The camera and colour filter graphs were obtained from their manufacturers.

where integer m is to be determined.
To unwrap the isoclinics and isochromatics, the phase

unwrapping algorithm proposed by Macy (1983) was im-
plemented. Representing the wrapped phase maps as two-
dimensional arrays, we define the neighbours of a pixel with
coordinates (j, k) as (j − 1, k), (j, k − 1), (j + 1, k) and
(j, k + 1). To keep the following formulae concise, i and
i+ 1 are used to denote neighbouring pixels.

By the sampling theorem, the highest possible change in
phase between two neighbouring pixels is less than half the
phase range. Hence, the differences in unwrapped isoclinic
phase and fringe order between two neighbouring pixels i,
i+ 1 obey the inequalities

−π

4
< θi+1 − θi <

π

4
(17)

and

−1

2
< Ni+1 −Ni <

1

2
, (18)

respectively. Rearranging Equations (17) and (18) and sub-
stituting in the formulae for θ and N from Equations (15)
and (16), we arrive at the recurrence relations

θi+1 =
(
((θc)i − θi) mod

π

2

)
+ θi −

π

4
(19)

and

Ni+1 =

((
δi
2π

−Ni

)
mod 1

)
+Ni −

1

2
, (20)

where mod denotes the modulo operation.
To unwrap the isoclinics and isochromatics, a mask M

was prepared for each shape using the GNU Image Manip-
ulation Software (GIMP), where

Mij =

{
∞ if (i, j) in shape field
−∞ otherwise.

An array queue was initialised containing the seed points
from which to start unwrapping. Seed points from the
same fringe were selected manually for isoclinic unwrap-
ping. Isotropic points were selected for isochromatic un-
wrapping. Algorithm 1 was applied to each wrapped phase-
map. The UNWRAP function represents Equation (19) or
(20) for isoclinic or isochromatic unwrapping, respectively
[23].

The unwrapping algorithm described above is very sen-
sitive to noise. To reduce errors in unwrapping, care was
taken to manually select seed points in areas of low noise
and a median filter was applied to all wrapped phase maps.
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Algorithm 1: Unwrapping algorithm based on
Macy’s method.

Data: wrapped: 2d Array, mask: 2d Array, seeds:
Array

unwrapped← mask;
foreach seed in seeds do

unwrapped[seed]← wrapped[seed];
end
queue← seeds;
while queue is not empty do

(x, y)← pop the first element from queue;
neighbours← [(x-1,y), (x+1,y), (x,y-1), (x,y+1)];
foreach (i, j) in neighbours do

if unwrapped[(i, j)] =∞ then
unwrapped[(i, j)]← UNWRAP((i, j), (x, y));
queue.append((i, j));

end
end

end

The median filter is a standard noise reduction technique
where the pixel value at a point is replaced with the median
of a kernel of pixels around it. The size of the kernel is
specified when applying the filter; here, a kernel of radius
5px was used.

C. Identification of isotropic points

Isotropic points were selected as seed points for isochro-
matic unwrapping as they are easy to identify and are known
to have an isochromatic fringe order of zero. For each sam-
ple, the plane polariscope was illuminated with white light,
and the polariser was rotated from 0◦ to 90◦, keeping the
polariser-analyser system crossed. Images were taken at in-
tervals of 10◦, and are presented in Appendix B. Isotropic
points were identified by locating the points of zero inten-
sity across all ten images. The isotropic points for the case
of the circular disc and ring under diametric compression
are indicated in Fig. 4.

V. THE DEEP LEARNING TECHNIQUE

A. Model Architecture

The model architecture used is indicated in Fig. 5 (Zhao
et al., 2022) and the input and output sizes of each block are
listed in Table II (Zhao et al., 2022) [15]. Due to computa-
tional limitations, the physical constraint module in Stres-
sUnet was omitted.

U-Net is the combination of two paths: the encoding
path and the decoding path. The encoding path (encoder) is
made up of layers of convolution followed by max-pooling
operations. The spatial dimensions of layer outputs are low-
ered with each successive layer, and high-resolution, low-
level characteristics are captured. The decoding path (de-
coder) is made up of layers of de-convolution. The spatial
dimensions of layer outputs are increased over the decoding
path, allowing the individual features identified in encoding
to be combined into an output image. Skip connections are
a key aspect of the U-Net architecture, and are used to con-
nect matching encoding and decoding layers. They enable

TABLE II: Encoder and Decoder Parameters of Each Blocka

Block Input Size Output Size

First block 224 * 224 * 3 112 * 112 * 64
Encoder1 112 * 112 * 64 56 * 56 * 64
Encoder2 56 * 56 * 64 28 * 28 * 128
Encoder3 28 * 28 * 128 14 * 14 * 256
Encoder4 14 * 14 * 256 7 * 7 * 512
Centre 7 * 7 * 512 14 * 14 * 512
Decoder4 14 * 14 * 512 28 * 28 * 256
Decoder3 56 * 56 * 128 112 * 112 * 64
Decoder2 112 * 112 * 64 224 * 224 * 64
Decoder1 224 * 224 * 64 224 * 224 * 1

a The first two numbers of the size indicate the size of the image
and the last number indicates the channels of the image
Note. From “Accuracy improvement of demodulating the stress

field with StressUnet in photoelasticity,” by W. Zhao et al., 2022,
Applied Optics, 61(29), p. 8678 (doi.org/10.1364/AO.464466).

the model to consider local and global information, making
the U-Net architecture well-suited to photoelasticity.

The Residual Neural Network (ResNet) backbone was
chosen for the encoder to ensure the stability of the model,
prevent over-fitting and enhance generalisation ability [24].

For a given isochromatic image, StressUnet generates a
predicted stress map by combining the hierarchical stress
data obtained by the encoder over multiple scales in the de-
coder. The magnitude of the predicted stress map is pro-
duced assuming a PMMA sample with thickness 0.01m.

B. Isochromatic Dataset

Deep neural networks such as U-Net require a large
amount of labelled data to train. Our model was trained
and tested on subsets of a large, publicly available set of
101,430 computer-generated isochromatic images and ref-
erence stress maps. The dataset contained fringe-stress
pairs for a circular disc and three rings under diametric
compression, a plate with a hole under axial compression,
a rod under punctual bending and distributed bending, and
three rings under rotation, as well as cases from other fields
such as saliency maps, Gaussian distributions and 3D mod-
els. Each case was simulated using theoretical incandes-
cent, fluorescent, white LED and cold white laser spectral
contents as well as constant in the visible range, and Sony
IMX250, DCU3260 and human vision spectral responses.
The dataset was selected for its size and the broad range of
photoelasticity cases to achieve high generality after train-
ing [13].

C. Loss function and Training

The structural similarity (SSIM) index is a popular im-
age quality metric that quantifies the similarity between two
images. SSIM was used to compare the similarity between
reference and predicted stress maps [25]. For a reference
image r and prediction image p, the SSIM is given by

SSIM(r, p) =
(2µrµp + C1) (2σrp + C2)(

µ2
r + µ2

p + C1

) (
σ2
r + σ2

p + C2

) , (21)
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FIG. 4: Isotropic points indicated on white-light illuminated linear polariscope images of the circular disc (left) and ring (right) under
diametric compression.

FIG. 5: Illustration of the U-Net architecture. Note. From “Accuracy improvement of demodulating the stress field with StressUnet in
photoelasticity,” by W. Zhao et al., 2022, Applied Optics, 61(29), p. 8678 (doi.org/10.1364/AO.464466).

where

µr =
1

N

N∑
i=1

ri, (22)

σrp =
1

N − 1

N∑
i=1

(ri − µr)(pi − µp), (23)

and

σr =

(
1

N − 1

N∑
i=1

(ri − µr)
2

) 1
2

. (24)

SSIM captures the structural similarity between the two im-
ages, meaning it penalises differences in structural informa-
tion.

The mean squared error (MSE) between two images es-
timates the absolute error. MSE is given by

MSE(r, p) =
1

mn

m∑
i=1

n∑
j=1

(rij − pij)
2
. (25)

To train for the identification of both local and global
stress patterns, a weighted sum of SSIM and mean square
error (MSE) was used as the loss function L, given by

L = 1− SSIM(r, p) + λMSE(r, p), (26)

where

λ =

{
1 epoch ≤ 20

1 + 0.2(epoch− 20) epoch > 20
.

Over the first twenty epochs, λ was kept small to allow the
model to focus on the general structure. λ was increased for
the final four epochs to make the model focus on the fine
structure of zones of high stress [15].

10, 000 images at even intervals were selected from the
dataset to make up the training data, ensuring that each case
was included in training. Similarly, a further 2, 000 images
were selected from the dataset to make up the validation set.
The sizes of these data sets were chosen to keep training
time low and avoid over-fitting the model without sacrific-
ing model accuracy.

The model was trained over 24 epochs. After each epoch,
the model was evaluated on the validation set. If the SSIM
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was higher than that of the previous epoch, the model pa-
rameters were updated. The Adam optimiser was used as
the network optimiser for its low training time and memory
requirements [26]. The learning rate was set to 10−4 for the
first 20 epochs and 10−5 for the final 4. A batch size of 128
was used, keeping the required memory and training time
manageable whilst minimising over-fitting. PyTorch run on
a desktop with an Intel i5 14-Core Processor at 4.80GHz,
32GB of memory, and Nvidia GeForce RTX3060Ti GPU
was used for all training and testing implementations.

VI. RESULTS

A. Ten-Step Phase Shifting Technique

Images were captured as RAW files with the .CR2 file
extension to reduce data loss due to compression. The
Python library RAWPI was used to import the raw images
and convert them to manipulatable arrays.

The isochromatic fringe order over the disc field is plot-
ted in Fig. 6. The central fringe order, Nc, was determined
to be 2.618± 0.006, where the mean of the 10 by 10 kernel
at the centre of the fringe image was taken to account for in-
consistencies. The uncertainty in Nc was set as the standard
deviation of the kernel, described in Appendix A. The ma-
terial fringe-stress value Fσ was determined via Equation
(14) to be (38.2± 0.1) kN/m/Fringe and used to calculate
the maximum shear stress.

The whole field wrapped isoclinic parameter θ, un-
wrapped isoclinic parameter θunwrapped, isochromatic pa-
rameter δ and maximum shear stress τmax obtained from
the ten-step PST, unwrapping algorithm and Equation 10
for the disc and ring under diametric compression are shown
in Fig. 7. The images taken of each step are presented in
Appendix C.

For the disc, the produced phase and stress maps are gen-
erally continuous, with noise isolated to the boundary of the
disc. The isochromatic parameter appears slightly asym-
metric with fringes bulging towards the top left and bottom
right. It also shows a small dark area to the left of and above
the centre. The stress map shows the top and bottom of
the disc to have the highest stress concentration, with lower
stress at the centre and lowest at the edges. It is asymmetric
with stress higher in the top left and bottom right than the
top right and bottom left.

For the ring, all four images show noise at the top.
θunwrapped and δ both show rectangular discontinuous sec-
tions on the left and right sides of the ring centre. The stress
map obtained is noisy, with sharp discontinuities throughout
the field. Through the noise, the underlying pattern resem-
bles the reference stress maps for a compressed ring in Fig
8.

B. Stress Unet

The StressUNET model was evaluated on the validation
data set, achieving 0.9780 SSIM overall. The model’s max-
imum shear stress predictions and the SSIM relative to the
reference stress maps for six sample isochromatic images
selected from the test data set are shown in Fig. 8. The disc
and ring images were chosen to allow for effective compar-
ison with experimental data, the dragon image was chosen

to demonstrate how the model performed for more complex
shapes. The model successfully predicted the overall stress
pattern for each shape, correctly identifying areas of high
and low stress. It overestimated the stress at the sides of the
rings and predicted a less concentrated stress distribution
for the disc. It struggled to predict the finer stress patterns
seen in the dragon and at the top and bottom of the rings
and disc. The model was less effective at higher compres-
sive forces, with SSIM decreasing from 0.9926 to 0.9752 as
maximum stress increased from 12MPa to 72MPa.

StressUnet was used to predict the maximum shear stress
over the whole field of a circular disc and ring under a
range of compressive forces with experimentally obtained
isochromatic images cropped to 224 X 224 and converted
to the .BMP file format to match the dimensions and for-
mat of the training dataset. The disc and ring results are
presented in Fig. 9 and 10, respectively. For the disc, the
top and bottom were successfully identified by the model
as the areas of highest stress. For 0.98 kN and 1.96 kN
of compressive force, a similar pattern as in the reference
disc stress map in Fig. 8 was predicted. For higher forces,
the model’s predictions did not match the expected pattern.
For the ring under 2.94 kN and 3.92 kN of compressive
force, the areas of low and high stress were correctly identi-
fied by the model, although stress was overestimated at the
sides and underestimated at the bottom. For the ring under
0.98 kN and 1.96 kN of compression, the predictions don’t
match the expected pattern.

VII. DISCUSSION

A. Ten-Step Phase Shifting Technique

Setting up the optical arrangements precisely was time-
consuming, and the load P on the sample varied throughout
each experiment. For the ten-step PST, this increased uncer-
tainty in Fσ and thus the produced stress maps. Care was
taken to keep the load close to constant, but the car jack did
not support fine adjustments. Implementing a more precise
loading mechanism such as the servo press used by Ren et
al. (2022) would enable P to be set with more precision and
reduce the time between measurements [27].

To obtain accurate, symmetric stress maps, the quarter
waveplates had to be perfectly aligned. Available lab time
constrained how much care could be taken setting up each
arrangement, and so the asymmetries of the disc isochro-
matic parameter and maximum shear stress were likely
caused by quarter wave-plate misalignment. To reduce this
error, the quarter wave-plates could be mounted in a rotating
frame with marked angle increments, enabling their angles
to be set with more precision and in less time.

Unwrapping the isoclinics and isochromatics in the case
of the disc and the isoclinics in the case of the ring yielded
results closely resembling that of the literature [9]. All three
of these unwrapped phase maps featured several narrow
horizontal discontinuities where the unwrapping algorithm
detected erroneous π-jumps. The ring was more difficult
for the algorithm to unwrap. Around the isotropic points to
the left and the right of the centre, it produced wide rect-
angles of zero phase when unwrapping the isoclinics. Un-
wrapping the isochromatics produced a highly discontinu-
ous stress map. These discontinuities arose where paths un-
wrapping from different seed points met out of phase as a

8
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FIG. 6: The wrapped and unwrapped fringe order across the horizontal diameter of the disc (left), a three-dimensional plot of fringe
order over the disc field (right).

FIG. 7: Wrapped isoclinic parameter, unwrapped isoclinic parameter, isochromatic parameter and maximum shear stress obtained for
the circular disc and ring under diametric compression.

result of noise in the isochromatic phase map provoking a
premature π-jump. The failure of the unwrapping algorithm
to unwrap the ring isochromatics suggests it could be im-
proved to better handle the ring and other complex shapes.
Ramesh and Ramji (2010) proposed the adaptive quality
guided phase unwrapping algorithm (AQGPU) where, in-
stead of unwrapping radially out from the seed points, each
unwrapped point is assigned a ’quality value’ related to the
statistical variance of the phase derivatives of its neighbour-
hood, and the queue is ranked by this quality value such
that neighbours of points with high-quality value are un-
wrapped with higher priority. This algorithm is likely to be
more accurate for complex shapes, producing stress maps
with fewer discontinuities, but would be much more com-

putationally intensive [28].

B. StressUnet

Zhao et al. (2022) reported an SSIM of 0.9789 for Stres-
sUnet without the constraint module evaluated on the val-
idation set. The discrepancy between our SSIM and theirs
is likely due to the fewer epochs we trained over: we ex-
pect that our model would have performed as well as theirs
had it been trained for the full 60 epochs. They reported a
slightly increased SSIM of 0.9790 for StressUnet with the
constraint module when evaluated on the same validation
set [15].

9
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FIG. 8: Sample isochromatic images from the data set (first row), reference stress maps (second row), stress maps predicted by
StressUNET (third row), structural similarity (SSIM) between reference and prediction (fourth row). The rings are presented in order of

increasing compressing force from left to right.

FIG. 9: Experimentally obtained isochromatic images for a disc under diametric compression (top) and maps of their maximum shear
stress predicted by StressUnet (bottom)

The performance of the StressUnet model when eval-
uated on our experimentally obtained data was inconsis-
tent. Stress maps obtained for the disc under 0.98 kN and
1.96 kN loads and the ring under 2.94 kN and 3.92 kN loads
resembled the reference stress maps in Fig. 8. The remain-
ing four stress maps were inaccurate. The model’s robust
performance on the validation data set suggests that its per-
formance on the experimentally obtained data is unlikely
to be improved significantly by increasing the number of
training epochs. Comparing the experimental and theoret-
ical isochromatic images, there are a few clear differences
which could instead have been responsible for the inaccu-
racy of predicted stress maps. The isochromatic images of
the disc and ring in Figures 9 and 10 show the lighting was
not even across the whole field. This can be seen clearly
in the images of the disc, where the upper left quarter ap-

pears brighter than the rest of the field. These images are
also less vibrant and have lower contrast than the theoreti-
cal images in Fig. 8. Stress maps produced by StressUnet
from experimental data could therefore be improved by en-
suring the whole field is illuminated uniformly and by ap-
plying post-processing to the isochromatic images to bring
them closer in appearance to the training data. In future in-
vestigations, the use of different light sources such as a cold
white laser and different specimen thicknesses could also be
investigated to better replicate the theoretical isochromatic
images.

10
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FIG. 10: Experimentally obtained isochromatic images for a ring under diametric compression (top) and maps of their maximum shear
stress predicted by StressUnet (bottom)

C. Comparisons

As can be seen in Fig. 4, the blocks used to compress the
specimen were visible through the disc and ring, appearing
as dark rectangles at the top and bottom of the fields. The
unwrapping algorithm interpreted these dark areas as phase
jumps and produced the noisy discontinuous zones seen at
the top and bottom of the samples. StressUnet interpreted
these areas as patches of low stress. Using smaller samples,
a larger sensor or smaller blocks could reduce this effect, but
how stress is distributed around the load points is generally
not of much interest, so in many cases, it could be sufficient
to simply remove these areas from the mask.

The magnitudes of the maximum shear stress were ap-
proximately a factor of three lower in the stress maps pro-
duced by the phase-shifting technique than those produced
by StressUnet. The value for Fσ obtained from the disc
was lower than the literature value of 130 kNm−1Fringe−1

by approximately a factor of 3.5 [29]. It is possible that
our material was not prepared out of PMMA, but out of a
different photoelastically sensitive material. In that case,
the magnitudes of the stress maps produced by StressUnet
for the experimental images are incorrect, as StressUnet as-
sumes PMMA specimens. This issue could be resolved by
ensuring the specimen is prepared from PMMA in future
experiments.

The process of producing maximum shear stress maps
with StressUnet was much less complicated and time-
consuming than with the phase shifting technique. In the
case of the disc under diametric compression, the PST pro-
duced a much more accurate map of maximum shear stress.
Whilst it failed to do so successfully for the ring, it seems
that, once improvements are made to the unwrapping pro-
cess, the PST has the potential to produce more accurate
stress maps than StressUnet when evaluated on experimen-
tal data. Should such unwrapping improvements be made,
this would confirm that StressUnet is better suited to quick,
relatively rough measurements, whereas the ten-step PST is
better suited to situations where stress maps are required to
be highly accurate and precise.

VIII. CONCLUSION

In this work, two methods for stress analysis with digital
photoelasticity, the ten-step phase-shifting technique with
a phase unwrapping algorithm and StressUnet, a convolu-
tional neural network based on U-Net, were compared and
contrasted. We demonstrated that both methods performed
inconsistently when evaluated on experimentally obtained
data for the cases of a circular disc and ring under diametric
compression and that StressUnet performed robustly when
evaluated on the large, diverse validation set of computer-
generated isochromatic images, achieving high structural
similarity with the reference stress maps. We highlighted
the advantages and limitations of each method, noting that
producing stress maps with StressUnet was much faster and
less complex than with the phase-shifting technique, requir-
ing just one image to be captured compared to the PST’s
ten, but that the phase-shifting technique had the potential
to produce more accurate results and did so in the case of
the disc. We proposed implementing AQGPU to improve
the unwrapping algorithm, increasing the number of train-
ing epochs as an improvement to StressUnet, and adjust-
ments to the experimental setup that could improve the ac-
curacy of both methods. To further investigate and compare
these methods, it would be desirable to evaluate them on a
more diverse set of experimental cases, varying the shape
and light source.
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[13] Juan Carlos Briñez-de León, Mateo Rico-Garcı́a, Alejandro
Restrepo-Martı́nez, and John W. Branch. Isochromatic-art: a
computational dataset for evaluating the stress distribution of
loaded bodies by digital photoelasticity. 4, June 2020. doi:
10.17632/z8yhd3sj23.4. URL https://data.mendeley.com/
datasets/z8yhd3sj23/4. Publisher: Mendeley Data.

[14] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
Net: Convolutional Networks for Biomedical Image Seg-
mentation. In Nassir Navab, Joachim Hornegger, William M.
Wells, and Alejandro F. Frangi, editors, Medical Image
Computing and Computer-Assisted Intervention – MICCAI
2015, Lecture Notes in Computer Science, pages 234–241,
Cham, 2015. Springer International Publishing. ISBN 978-
3-319-24574-4. doi:10.1007/978-3-319-24574-4˙28.

[15] Weiliang Zhao, Guanglei Zhang, and Jiebo Li. Accuracy im-
provement of demodulating the stress field with StressUnet
in photoelasticity. Applied Optics, 61(29):8678–8687, Octo-

ber 2022. ISSN 2155-3165. doi:10.1364/AO.464466. URL
https://opg.optica.org/ao/abstract.cfm?uri=ao-61-29-8678.
Publisher: Optica Publishing Group.

[16] Eugene Hecht. Optics, Global Edition. Pearson Education,
Limited, Harlow, UNITED KINGDOM, 2016. ISBN 978-
1-292-09696-4. URL http://ebookcentral.proquest.com/lib/
durham/detail.action?docID=5174663.

[17] E.J. Hearn. Experimental Stress Analysis. In Mechanics
of Materials 2, pages 166–192. Elsevier, 1997. ISBN 978-
0-7506-3266-9. doi:10.1016/B978-075063266-9/50007-
X. URL https : / / linkinghub. elsevier. com / retrieve / pii /
B978075063266950007X.
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F. Bullard Comparative Analysis of the Ten-Step PST and StressUnet for Photoelastic Stress Analysis

FIG. 11: Experimentally obtained images of a ring under diametric compression in a dark-field plane polariscope. The angle of the
polariser is indicated, and the polariser-analyser system is kept crossed.

Appendix A: Errors

The light used for the ten-step PST was approximately monochromatic. Its relative spectral content illustrated in Fig. 3 is
approximated by a normal distribution with mean λpeak given by the peak wavelength and standard deviation σλ calculated
from the full width at half maximum FWHM as

σ =
1

2
√
2 ln 2

FWHM. (A1)

FWHM is defined as the difference between the two wavelength values at which the spectral content is 0.5.
αN , the error in central fringe-order Nc, was calculated as the standard deviation of the 100-pixel square kernel centred

on the centre of the disc,

αN =

√√√√ 1

100

100∑
i=1

(Ni −Nc)
2
, (A2)

where Ni denotes the fringe-order at pixel i, and Nc the mean fringe-order over the kernel.
The error αF associated with the material stress-fringe value Fσ was determined as

αF = Fσ

√(αP

P

)2
+
(αD

D

)2
+

(
αN

Nc

)2

(A3)

where αD and αP give the experimentally obtained errors in diameter D and compressive force P , respectively.

Appendix B: Isotropic Point Determination Data

The data collected to identify the isotropic points in the disc and ring are presented in Fig. 11 and Fig. 12, respectively.

Appendix C: PST Data

The data collected for the disc and ring ten-step PST are presented in Fig. 13 and Fig. 14, respectively.
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F. Bullard Comparative Analysis of the Ten-Step PST and StressUnet for Photoelastic Stress Analysis

FIG. 12: Experimentally obtained images of a disc under diametric compression in a dark-field plane polariscope. The angle of the
polariser is indicated, and the polariser-analyser system is kept crossed.

FIG. 13: Experimentally obtained images of the disc under diametric compression used in the ten-step PST.

FIG. 14: Experimentally obtained images of the ring under diametric compression used in the ten-step PST.
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F. Bullard Comparative Analysis of the Ten-Step PST and StressUnet for Photoelastic Stress Analysis

SCIENTIFIC SUMMARY FOR A GENERAL AUDIENCE

Understanding how shapes behave when compressed or stretched is of vital importance in many areas. Consider, for
example, Tower Bridge supporting the weight of thousands of people and cars each day, or the wings of a Boeing 737
balancing the weight of the aircraft with the forces from the air around it. Were either of these to break or lose shape whilst
in use, the results could be catastrophic. To avoid such disasters, engineers have several techniques at their disposal. One
approach is to use supercomputers to simulate the shapes. Unfortunately, whilst effective, supercomputers are expensive to
run and complicated to use.

A simpler, cheaper approach takes advantage of photoelasticity, the same phenomenon responsible for the rainbow pattern
you may have observed when using a plastic protractor, as above, or eating lunch with plastic cutlery. With the help of just
a basic camera, a lamp and some standard optical equipment, engineers can understand how complex shapes behave under
force, enabling them to build reliable wings, bridges and much more. In this work, we attempt to further speed up and
simplify the process by implementing a machine-learning technique borrowed from the medical field, and compare it to a
more traditional approach.

200 words
”Plastic Protractor Polarized” by Nevit Dilmen is licensed under CC BY-SA 2.0

15


	Comparative Analysis of the Ten-Step Phase Shifting Technique and StressUnet for Photoelastic Stress Analysis
	Abstract
	Introduction
	Theory
	Experimental Setup
	The Ten-Step Phase Shifting Technique
	Background
	Unwrapping Isoclinics and Isochromatics
	Identification of isotropic points

	The Deep Learning Technique
	Model Architecture
	Isochromatic Dataset
	Loss function and Training

	Results
	Ten-Step Phase Shifting Technique
	Stress Unet

	Discussion
	Ten-Step Phase Shifting Technique
	StressUnet
	Comparisons

	Conclusion
	References
	Errors
	Isotropic Point Determination Data
	PST Data
	Scientific Summary for a General Audience


