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Solving combinatorial optimisation (CO) problems efficiently is an important challenge that spans various
domains. In this report, we investigate and compare two prominent meta-heuristic approaches to tackle CO
problems: simulated annealing (SA) and quantum annealing (QA). We use a 16-city instance of the Travelling
Salesman Problem (TSP) as a test example and solve it via standard Monte Carlo SA and path-integral Monte
Carlo (PIMC) QA. We determine the range of initial temperature T0 for SA, as well as the ranges of Trotter
number P and ambient temperature T for QA, that yield the most efficient and accurate results through studies of
the dependence of the final residual length on each method’s parameters. The superiority of PIMC QA relative to
SA is demonstrated, for this TSP, with a study of the dependence of the final residual length on the total number
of Monte Carlo steps. These results suggest QA could be an even better general-purpose CO meta-heuristic than
SA. Future areas of investigation for QA and quantum optimisation as a whole are suggested.

I. INTRODUCTION

Combinatorial optimisation (CO) is the act of finding the
arrangement of a discrete set of objects that minimises a
given cost function subject to a set of constraints. Gen-
erally, CO problems are difficult to solve as the space of
possible solutions can be huge, making exhaustive search
intractable. For such problems, we must resort to more spe-
cialised algorithms that rule out large parts of the solution
space, or meta-heuristics that yield approximate solutions
in a fraction of the time [1]. Two popular meta-heuristics
are simulated annealing (SA) and quantum annealing (QA).

SA, first introduced in 1983 by Kirkpatrick et al., is a
classical optimisation algorithm. Its name comes from the
annealing process in metallurgy, where a metal is heated
and then cooled in a controlled fashion to reach a low-
energy crystalline state. SA mimics this cooling process,
simulating thermal fluctuations to escape local minima and
explore the solution space efficiently [2].

QA, on the other hand, uses quantum fluctuations pro-
vided by a transverse magnetic field to escape local minima.
Like the temperature in SA, this field is slowly reduced to
zero over the course of the annealing. The main advantage
of exploiting quantum fluctuations over thermal fluctuations
comes from the ability of quantum systems to tunnel into
areas that are classically forbidden. As the field is reduced,
the system explores lower energy regions until arriving at a
final state [3].

In 2002, inspired by the experimental work of Brooke
et al. who, a year earlier, demonstrated that QA per-
forms better than thermal annealing in preparing the
ground state of the spin-1/2 disordered Ising ferromagnet
LiHo0.44Y0.56F4 [4], Martoňák et al. compared the perfor-
mance of Monte Carlo (MC) SA and path-integral Monte
Carlo (PIMC) QA in simulating the ground state of the two-
dimensional random Ising model. They found that QA out-
performed SA in that case too [3]. Two years later, they
found similar results when testing SA and QA on the Trav-
elling Salesman Problem (TSP) [5].

The TSP is a famous CO problem. Given N cities sep-
arated by distances dij , the goal is to find the shortest tour
that visits each city exactly once and returns to the starting
point. Instances of the TSP can be found in a range of ar-
eas, including supply chain optimisation, network routing,
chip design, delivery planning and DNA sequencing. In this
work, we restrict ourselves to the symmetric TSP, where we
assert that the distance between two cities is the same in
each direction, i.e. dij = dji for all cities i and j. The TSP

is an NP-hard problem, meaning a solution can be verified
in polynomial time, but finding the optimal solution likely
scales exponentially with the size of the problem 1. For
a TSP with N cities, there are (N − 1)!/2 possible tours,
making exhaustive search intractable for large N .

Whilst ad-hoc algorithms specifically tailored to the TSP
are the most widely adopted, SA, due to its simplicity
and flexibility, has been a consistently popular option for
the TSP [6]. In this work, we follow in the footsteps of
Martoňák et al., mapping the TSP to a two-dimensional
Ising spin system for our implementation of Monte Carlo
SA, and applying a Trotter decomposition for our imple-
mentation of PIMC QA. QA’s superiority over SA for a
small instance of the TSP is demonstrated. We go one step
further and investigate how the performance of the two al-
gorithms depends on their parameters, identifying ranges
for each parameter that consistently and efficiently yield the
most accurate results. Finally, we discuss the implications
of our results to the field and suggest directions for future
work in this area.

II. TRAVELLING SALESMAN PROBLEM

Formally, for a TSP of N cities, a valid tour can be rep-
resented by an N ×N matrix U of bits (1s and 0s), where

Uij = Uji =

{
1 if i and j connected
0 otherwise.

(1)

Since we are considering only the symmetric TSP, every
valid tour has the same length as its reverse. As we will find
out, it is convenient to use the above symmetric representa-
tion for undirected tours, i.e. U = U t.

The total length of a tour U is given by

L(U) = Hpot(U) =
1

2

∑
i,j

dijUij , (2)

where dij is the distance between cities i and j as above.
In the context of SA and QA, Hpot is the classical potential
we seek to minimise.

1 Until it is proven that P ̸= NP , it is still possible that polynomial-time
algorithms for NP-hard problems exist.
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FIG. 1: Left: A six-city tour (125436) represented by
symmetric matrix U . Right: The new tour (123456) obtained
when a two-opt move on cities 2 and 3 is made, represented by
symmetric matrix U ′. Connections broken and created by the

move are highlighted in red and green. Note that the move
reverses the direction of the 345 sub-tour, but no bits (indicated
by the red dashed circles) need to be flipped in our symmetric

representation.

Both SA and QA rely on fluctuations to search the solu-
tion space and minimise length. To simulate such fluctua-
tions, a move from the current configuration to a slightly dif-
ferent one is made. 2-opt, first proposed by Croes in 1958,
is a simple local search algorithm often applied to the TSP
[7]. For our fluctuations, we borrow the move from 2-opt.
We break two existing connections {(i → j), (k → l)} and
form two new connections {(i → k), (j → l)}, to make a
move to a new tour. Fig. 1 illustrates a 2-opt move on a
simple six-city tour. We can see that making a 2-opt move
in the symmetric tour representation is convenient as no bit-
flips are necessary to account for the reversal of sub-tours.
In the example move, the sub tour 543 is changed to 345 in
the new tour, but the bits U54, U43, U34 and U45 (indicated
by the red dashed circles) are unchanged.

III. SIMULATED ANNEALING

In SA, thermal fluctuations are employed to stochasti-
cally sample the solution space {U} according to an accep-
tance factor P (∆H,T ) that selects more harshly at lower
temperatures. A popular choice of acceptance factor is the
Metropolis criterion,

P (∆H,T ) = max

[
exp

(
∆H

T

)
, 1

]
. (3)

Here, ∆H = (Hpot(U)−Hpot(U
′)) where the fluctuation

is attempting to make a move from state U to U ′ and T
is the fictitious temperature gradually decreased from ini-
tial temperature T0 to 0. The rate at which T is decreased
is the annealing schedule. Investigating different anneal-
ing schedules is a project in itself; in this work, we use a
linear annealing schedule. At all values of T , the Metropo-
lis criterion accepts any move that lowers the potential (i.e.
∆H > 0). Moves that raise the potential are less likely to be
accepted as T is reduced [8]. As annealing progresses and
T is decreased, the system goes from sampling the full so-
lution space with large thermal fluctuations to concentrating
on sampling a smaller solution set in lower energy regions.

As the annealing comes to an end, T is low and the system
is unable to overcome any potential barriers, instead tend-
ing towards its local minimum. In general, the final state is
not the true ground state of Hpot, but, as we will see, it can
come very close.

To implement SA, the standard Metropolis algorithm is
employed. Initially, a random tour U is generated and the
system temperature is set to some T0. Now, the annealing
process begins: for τ Monte Carlo steps, a 2-opt move is
applied to each of the N cities, creating a new tour U ′. The
energy difference ∆H is then used to calculate the accep-
tance factor P (∆H) (Eq. 3). A pseudo-random number x
between 0 and 1 is generated. If P (∆H) is greater than x,
then the current state U is set to the new tour U ′. If P (∆H)
is less than x, then the current state U is kept the same. Af-
ter each MC step, T is updated according to the annealing
schedule and the process is repeated. After τ MC steps, SA
is complete and the final state U is our best solution.

IV. QUANTUM ANNEALING

Since we are making analogies to statistical physics, it
makes sense to talk about the system in terms of spins. To
a tour represented by symmetric matrix U , we associate a
spin configuration

Sz
ij = Sz

ji = 2Uij − 1 =

{
+1 if i and j connected
−1 otherwise.

(4)

In terms of spins, the classical potential in Eq. 2 becomes

Hpot(S) =
1

4

∑
i,j

dij
(
Sz
ij − 1

)
. (5)

We have mapped the TSP to an Ising-like system.
To induce the quantum fluctuations required for QA, we

must introduce a kinetic energy term Hkin. As the TSP
has no natural Hkin, we are left to devise one ourselves.
Following the work of Martoňák et al., we again employ
the 2-opt move. The 2-opt move {(i → j), (k → l)} →
{(i → k), (j → l)} can be represented by spin operators,

S+
i,kS

+
j,lS

−
i,jS

−
k,l, (6)

where S±
i,k flips an Ising spin variable at (i, j) and (j, i).

We can now construct the quantum Hamiltonian for the
TSP,

HTSP = Hpot(U) +Hkin, (7)

where we use the 2-opt spin operator representation to con-
struct

Hkin = −1

8
Γ(τ)

∑
(i,j)

∑
(k,l)

S+
i,kS

+
j,lS

−
i,jS

−
k,l. (8)

Here, Γ(τ) is a fictitious transverse magnetic field orthogo-
nal to the Ising axis. A large initial Γ0 is generally chosen
so the kinetic energy term dominates at the start, provid-
ing the quantum fluctuations necessary to fully explore the
solution space. As the annealing progresses, Γ is carefully
reduced, decreasing the contribution of the kinetic energy
and enabling the quantum fluctuations to explore local so-
lutions with lower potential. At all times, the Hilbert space
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in which the tour matrices live is constrained, ensuring they
always represent a valid tour.

While great strides have been made in building real-
world quantum annealers over the last few decades, they are
yet to reach the mainstream, so simulating QA on a classical
computer remains desirable [9]. One approach is to evolve
the system via numerical integration of the time-dependent
Schrödinger equation, but this is extremely computationally
intensive due to the size of the Hilbert space. Instead, we
turn to the process of path-integral Monte Carlo (PIMC).

V. PATH-INTEGRAL MONTE CARLO

To simulate QA with PIMC, we must first apply a Trot-
ter discretisation to the path integral. For the Hkin in Eq.
8, this is very difficult and would yield an 8-operator ki-
netic energy term. To preserve the simplicity of PIMC, we
substitute our kinetic energy term with that of the standard
transverse-field Ising model [10],

H̃TSP = Hpot(S)− Γ(τ)
∑
(i,j)

S+
(i,j). (9)

This Hamiltonian is trivially Trotter discretised. Strictly,
the fluctuations due to this simplified kinetic energy term do
not produce valid tours. However, by restricting ourselves
to exclusively 2-opt moves, we ensure the constraints on
the Hilbert space are always applied. Applying the Trotter
breakup formula to the partition function of this transverse-
field quantum Ising system, we find it is equivalent to the
partition function of a classical Ising system with an extra
dimension, referred to as the Trotter dimension. We can,
therefore, map our quantum Ising system to a classical one
with Hamiltonian given by

HP
TSP =

P∑
k=1

Hpot + J⊥
∑
(i,j)

S+,k
(i,j)S

+,k+1
(i,j)

 , (10)

where

J⊥ = −PT

2
ln

(
tanh

Γ

PT

)
, (11)

T is the ambient temperature of our original quantum sys-
tem and PT is the temperature of our new classical sys-
tem (Trotter temperature). A full derivation can be found in
Ref. [3]. P itself is called the Trotter number; as illustrated
in Fig. 2, we can think of the new classical systems as P
slices of N ×N spins arranged in parallel along the Trotter
dimension, forming a 3-dimensional lattice. J⊥ can be seen
as an Ising-like coupling between equivalent spins in neigh-
bouring Trotter slices [11]. If the intention was to simulate
the exact quantum statistics of a system, we would have to
work in the limit P → ∞. Since, however, we are only in-
terested in finding a state close to the classical ground state,
we can work with finite P .

This mapping of a two-dimensional quantum system to
a three-dimensional classical system allows us to simulate
QA with a very similar standard Metropolis algorithm to
that described in Section III with some small changes. Ini-
tially, when Γ(τ) is large, J⊥ is very small and the interac-
tion between Trotter slices is negligible. The 3-dimensional
system resembles a set of P isolated 2-dimensional sys-
tems. It is therefore appropriate to initialise the system as P

FIG. 2: An example of a 3-dimensional classical Ising system
with Trotter slices stacked along the vertical Trotter axis. Three

slices are indicated, but there are P in total. The spins in
neighbouring slices interact according to J⊥. Note that each

Trotter slice will have N ×N spins arranged in a square lattice in
our representation of the TSP.

FIG. 3: Visualisation of the N = 16 instance ulysses16 of
TSPLIB95. Left: A random (and far from optimal) tour. Right:

The optimal tour. The total length of each tour is indicated. Cities
11 and 13 have been slightly adjusted for clarity.

copies of a random tour. Again, the annealing process takes
place over τ MC steps, for all of which T is held constant.
At each MC step, a 2-opt move is applied to each of the N
cities in each of the P Trotter slices. Again, the acceptance
factor in Eq. 3 is calculated using the Hamiltonian in Eq. 10
this time. After each MC step, Γ is updated according to the
annealing schedule. After τ MC steps, PIMC QA is com-
plete and the Trotter slice with the lowest classical energy
(Eq. 2) is taken as the best solution.

At each MC step in PIMC, N×P 2-opt moves are made.
PIMC is, therefore, a factor of P slower and requires a fac-
tor of P more memory than SA. For a fair comparison of
the algorithms, we introduce a quantity ”total CPU time”.
For SA, this is just τ . For PIMC, we account for the extra
factor of P and consider the product τ × P .

VI. NUMERICAL IMPLEMENTATION

Both SA and QA were implemented in Python; their code
has been made available in Ref. [12]. To compare the per-
formance of SA and QA for the TSP, a small N = 16 city
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instance of TSPLIB95, ulysses16, was selected [13].
ulysses16 is visualised in Fig. 3. On the left is a random,
sub-optimal tour and on the right is the optimal tour with the
problem’s ideal length indicated. ulysses16 was chosen
as it is both small enough that each algorithm could be run
multiple times in the time available and large enough that
the size of the solution space makes finding an accurate re-
sult a relatively difficult task.

Due to the probabilistic nature of Monte Carlo simula-
tions, the solutions obtained by SA and QA vary when run
multiple times. To capture the general performance of the
algorithm, each simulation was repeated 20 times and the
mean tour length L̄ was calculated. A good algorithm must
yield reliably accurate results; to quantify their uncertainty,
the standard error was also calculated, see Appendix A.

The choice of parameters for SA and QA is an important
and non-trivial task in its own right. In general, each in-
stance of the TSP has a unique set of parameters that yield
the best results. Initially, we identified, via trial and error,
τ = 100, P = 10, Γ0 = 300 and PT = 50 to be values
that yield good results efficiently. To determine their opti-
mal values for solving ulysses16, trials were run varying
one quantity at a time. We expect the performance of each
algorithm to show a strong dependence on the choice of pa-
rameters. The choice of Γ0 is expected to be more arbitrary
as long as it is sufficiently greater than the dij . For both SA
and QA, a linear annealing schedule was used.

VII. RESULTS AND DISCUSSION

We quantify the success of the SA and QA by the mean
excess lengths between the length of the obtained tours and
the optimal tour,

ϵ̄exc =
L̄− Lopt

Lopt
, (12)

where L̄ is as defined above and Lopt is the total length
of the optimal tour. To investigate the dependence of SA
and QA on parameter choice, ϵ̄exc was plotted against each
parameter individually. For a quantitative comparison of
SA and QA, the dependence of ϵ̄exc as a function of τ was
studied.

A. Dependence of SA and QA on parameter choice

As described in Section III, T governs the extent to which
SA samples the full solution space. Therefore, we expect
SA run from a low initial temperature T0 to get stuck in
local minima. In contrast, for high values of T0, we expect
SA to continue to sample the whole solution space for the
whole annealing process, meaning it never converges on the
shortest paths. In Fig. 4, ϵ̄exc was plotted (black, filled
circles) for values of T0 ranging from 1 to 400. As expected,
SA performed less well at low and high values of T0. SA
performed best when T0 was around 50.

We saw in Section V that, in QA, the strength of the cou-
pling J⊥ between spins in neighbouring Trotter slices is de-
termined, for a given Γ, by the Trotter temperature PT . By
definition, the Trotter number P itself governs the number
of slices in the Trotter axis. Therefore, it makes sense to

FIG. 4: Excess length as a percentage of the optimal length after
simulated annealing (SA) from initial temperatures T0 and

quantum annealing (QA) at PT , averaged over 20 runs, for the
N = 16 instance ulysses16 of TSPLIB95. In each case, the

total number of Monte Carlo steps τ was 100 and QA was carried
out with a Γ0 of 300 and a P of 10.

investigate the dependence of ϵ̄exc on both PT and P inde-
pendently. In Fig. 4, ϵ̄exc was plotted (red, open circles) for
values of PT ranging from 1 to 175. In the range studied,
ϵ̄exc more or less increased with PT . At high PT , Hpot

is negligible compared to J⊥ throughout the annealing. In-
stead of converging on the minimum of the potential, the
system minimises the interactions between adjacent Trotter
slices and ends up with P copies of the same tour, yield-
ing a large, uncertain ϵ̄exc. For all values below 100, the
system converged on the optimal tour. This is surprising
and doesn’t match the results found in the literature, where
QA fails to converge for low values of PT [3]. In the limit
PT → 0, J⊥ ∼ 0 and the process is essentially SA with
an extra factor of P moves every MC step. We will see that
QA outperforms SA at equivalent CPU time if the total τ is
greater than 500. Accounting for the extra factor of P here,
at low PT our QA is essentially SA with a total CPU time
of 1000, so we would expect to see an increase in ϵ̄exc. We
suspect that studying this further with larger instances of the
TSP, where the superiority of QA is more apparent, would
yield the expected results.

In Fig. 5, ϵ̄exc was plotted for values of P between 1
and 30. ϵ̄exc for each P was under 0.2%, decreasing as P
increased up to 20 and staying roughly the same for 20 and
30. The uncertainty followed a similar trend, decreasing
as P increased up to 20 and increasing slightly between 20
and 30. These results matched the theory: at low P , QA
approaches SA. For larger problems than ulysses16, we
expect to notice a decrease in ϵ̄exc as P increases beyond
20.

In Fig. 6, ϵ̄exc was plotted for initial transverse field
strength Γ0 ranging from 1 to 500. As predicted in Section
VI, increasing Γ0 beyond a certain value had little effect on
the performance of QA. For values over 300, the algorithm
performed accurately and with little uncertainty. At low val-
ues of Γ0, the quantum fluctuations are too small to explore
the full solution space, leading to high excess lengths with
significant uncertainty.
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FIG. 5: Excess length as a percentage of the optimal length after
quantum annealing (QA) with Trotter number P , averaged over

20 runs, for the N = 16 instance ulysses16 of TSPLIB95. In
each case, Γ0 was 300, PT was 50 and τ was 100.

FIG. 6: Excess length as a percentage of the optimal length after
quantum annealing (QA) with initial transverse field strength Γ0,
averaged over 20 runs, for the N = 16 instance ulysses16 of
TSPLIB95. In each case, P was 10, PT was 50 and τ was 100.

B. Comparison between SA and QA

To compare SA and QA, we studied their performance
for τ ranging from 25 to 1000. Fig. 7 shows the ϵ̄exc ob-
tained in each case. Also indicated (blue, open circles) is
the excess length after QA for τ MC steps plotted against
τ × P , enabling a direct comparison between SA and QA
for equivalent total CPU time. For all τ investigated and
both algorithms, results obtained were within 1.2% of the
optimal length. For SA and QA, the uncertainty decreased,
in general, as τ increased. If ϵ̄exc less than 0.2% is desired,
or CPU time is greater than 500, QA is superior to SA.

These results closely resemble those of Martoňák et al.
for a larger N = 1002 TSP instance, pr1002, and for the
two-dimensional random Ising model [3, 5]. They support
the theory that the ability of quantum systems to tunnel out
of local minima enables QA to converge to an approximate
ground state more quickly than SA.

FIG. 7: Excess length as a percentage of the optimal length after
simulated annealing (SA) and quantum annealing (QA) for total

Monte Carlo steps τ , averaged over 3 runs, for the N = 16
instance ulysses16 of TSPLIB95. In each case, SA was

carried out with T0 = 100 and QA was carried out with
Γ0 = 300, PT = 100 and P = 10.

VIII. CONCLUSION AND OUTLOOK

In this report, we have investigated the applicability of
quantum annealing simulated with the path-integral Monte
Carlo technique as a combinatorial optimisation algorithm,
with the Travelling Salesman Problem as an example test.
We compared it to simulated annealing, an established al-
gorithm for combinatorial optimisation, demonstrating its
superiority in producing accurate results efficiently. Whilst
SA has never been the most popular TSP algorithm, be-
ing beaten consistently by others specifically tailored to the
problem, the success of QA in these tests encourages future
research into its application as another general-purpose CO
algorithm. Moreover, it would be interesting to see how QA
performs on other, real-world CO problems, such as those in
computational biology described by Greenberg et al. [14].

Since Martoňák et al. published their work on quantum
annealing the TSP in 2002, there have been many develop-
ments in the field. Researchers have found success in com-
bining QA with a range of classical heuristics, and other hy-
brid quantum-classical algorithms such as the quantum ap-
proximate optimisation algorithm (QAOA), introduced by
Farhi et al. in 2014, where the problem is encoded into a
quantum circuit, on which classical optimisation algorithms
are applied iteratively until the system converges to a near-
optimal solution [15, 16]. It would be interesting to imple-
ment some of these algorithms and compare their perfor-
mance to QA for the TSP.

As mentioned before, some success has been found in
building real-world quantum annealers. Whilst they are still
some way away from beating classical computers as the
hardware of choice for CO and struggle to solve even sim-
ple instances of the TSP [17], they remain an active and
interesting area of research.

This work was somewhat limited by available time and
computing power. Given more of each, it would be inter-
esting to study the performance of QA as a function of its
parameters for a large set of TSPs of various sizes. Such a
study could enable the writing of a guide for QA parameter
selection, allowing QA to be applied to a broader range of
problems.
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Numerically, our implementation of PIMC was relatively
basic. There is clear scope for efficiency improvements:
running each Trotter slice in parallel would yield a signif-
icantly faster algorithm, as would simplifying the energy
difference calculation to only consider change due to the
four spins flipped in each move.
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Appendix A: Errors

The error in excess length αϵ indicated in Figs. 4 to 7, is
the standard error over the population of 20 runs for each
mean, given by

αϵ =
σϵ√
20

, (A1)

where

σϵ =

√√√√ 1

20

20∑
i=1

(ϵi − ϵ̄)
2
. (A2)
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SCIENTIFIC SUMMARY FOR A GENERAL AUDIENCE

A salesman planning a route visiting several cities and a computer chip designer arranging components on a chip face a
common challenge: finding a route between points that minimises cost. This puzzle is found in various fields, from logistics
to tourism, and is known as the Travelling Salesman Problem (TSP).

One way to solve the TSP is to list every possible route and choose the shortest one. Unfortunately, for complex problems
with many points, the number of possible routes is extremely large, making this approach impractical. Instead, we turn to
more sophisticated methods such as simulated annealing (SA) and quantum annealing (QA).

Picture, as below, the TSP as a landscape with hills and valleys, where hills represent longer routes and valleys represent
shorter ones. With SA, we attempt to find the lowest valley by jumping randomly from spot to spot, comparing one spot
with the next. QA, however, employs a quantum phenomenon called tunnelling, allowing us to ’teleport’ through hills to
reach the bottom faster.

In this report, we demonstrate that QA solves the TSP more efficiently than SA, suggesting that QA holds potential for
cost-reduction in real-world instances of the Travelling Salesman Problem.
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